Math 259A Lecture 7 Notes

Daniel Raban

October 11, 2019

1 WO and SO Continuity of Linear Functionals and The Pre-Dual of \mathcal{B}

1.1 Weak operator and strong operator continuity of linear functionals

Lemma 1.1. Let X be a vector space with seminorms p_1, \ldots, p_n . Let $\varphi : X \to \mathbb{C}$ be a linear functional such that $|\varphi(x)| \leq \sum_{i=1}^n p_i(x)$ for all $x \in X$. Then there exist linear functionals $\varphi_1, \ldots, \varphi_n : X \to \mathbb{C}$ such that $\varphi = \sum_i \varphi_i$ with $|\varphi_i(x)| \leq p_i(x)$ for all $x \in X$ and for all i.

Proof. Let $D = \{\tilde{x} = (x, \dots, x) : x \in X\} \subseteq X^n$, which is a vector subspace. On X^n , take $p((x_i)_{i=1}^n) = \sum_i p_i(x_i)$. We also have a linear map $\tilde{\varphi} : D \to \mathbb{C}$ given by $\tilde{\varphi}(\tilde{x}) = \varphi(x)$. This map satisfies $|\tilde{(x)}| \leq p(\tilde{x})$. By the Hahn-Banach theorem, there exists an extension $\psi \in (X^n)^*$ of $\tilde{\varphi}$ such that $|\psi(x_1, \dots, x_n)| \leq p(x_1, \dots, x_n)$. Now define $\varphi_k(x) := \psi(0, \dots, x, 0, \dots)$, where the x is in the k-th position.

Theorem 1.1. Let $\varphi : \mathcal{B} \to \mathbb{C}$ be linear. φ is weak operator continuous if and only if it is it is strong operator continuous.

Proof. We only need to show that if φ is strong operator continuous, then it is weak operator continuous. So assume there exist $\xi_1, \ldots, \xi_n \in X$ such that $|\varphi(x)| \leq \sum_{i=1}^n ||x\xi_i||$ for all $x \in \mathcal{B}$. By the lemma, we can split $\varphi = \sum \varphi_k$, such that $|\varphi_k(x)| \leq ||x\xi_k||$ for all x and k. By the Riesz representation theorem, there exists an $\eta_k \in H$ such that $\varphi_k(x) = \langle x\xi_k, \eta_k \rangle$. So $\varphi(x) = \sum_k \langle x\xi_k, \eta_k \rangle$. So φ is weak operator continuous.

Corollary 1.1. Any closure in $\mathcal{B}(H)$ of a convex set is the same with respect to the weak operator and strong operator topologies.

Proof. If we have a point in the closure wrt one topology but not in the other, we can separate it with a hyperplane using the geometric Hahn-Banach theorem. \Box

Corollary 1.2. Let $M \subseteq \mathcal{B}(H)$ be a vector subspace. Then a linear functional $\varphi : M \to \mathbb{C}$ is weak operator continuous if and only if it is strong operator continuous.

1.2 The pre-dual of \mathcal{B}

Recall that we had $\mathcal{B}_{\sim} = \operatorname{span}\{x \mapsto \sum_k \langle x\xi_k, \eta_k \rangle : \xi_k \eta_k \in H\}$ and $\mathcal{B}_* := \overline{\mathcal{B}_{\sim}}$. This is the same as taking finite rank operators in $T \in \mathcal{B}(H)$ and taking the functionals $x \mapsto \operatorname{tr}(xT)$.

Remark 1.1. \mathcal{B}_* is the space of trace class operators. Suppose $T \in \mathcal{B}(H)$ has finite rank. We have $|T| = (T^*T)^{1/2}$ by functional calculus. Then $\operatorname{tr}(|T|)$ is the **Schatten-von** Neumann 1-norm of the operator.

Theorem 1.2. $\mathcal{B} = (\mathcal{B}_*)^*$ via the duality pairing $\mathcal{B} \times \mathcal{B}_* \to \mathbb{C}$ given by $\langle x, \varphi \rangle = \varphi(x)$.

Here is the idea: Since $\mathcal{B}_* \subseteq \mathcal{B}^*$, we can view its elements as linear functionals on \mathcal{B} . But then we can view elements of \mathcal{B} as linear functionals on \mathcal{B}_* .

Proof. If $x \in \mathcal{B}$, denote $\Phi_x : \mathcal{B}_* \to \mathbb{C}$ by $\Phi_x(\varphi) = \varphi(x)$. Then $|\Phi_x(\varphi)| \leq ||\varphi|| \cdot ||x||$, soo $||\Phi_x|| \leq ||x||$. So the map $\mathcal{B} \to (\mathcal{B}_*)^*$ sending $x \mapsto \Phi_x$ is a contraction. In fact, $||\Phi_x|| = ||x||$ because $||x|| = \sup_{\xi,\eta \in (H)_1} |\langle x\xi, \eta \rangle$.

To show that this is surjective, take $\Phi \in (\mathcal{B}_*)^*$. Then consider the map $H \times H \mapsto \mathbb{C}$ given by $(\xi, \eta) \mapsto \Phi(\omega_{\xi,\eta})$, where $\omega_{\xi,\eta} = \langle \cdot \xi, \eta \rangle$. So by Riesz-representation, there is an $x \in \mathcal{B}$ such that $\Phi(\omega_{\xi,\eta}) = \langle x, \xi, \eta \rangle$. So $\Phi = \Phi_x$.

Corollary 1.3. $(\mathcal{B})_1$ is weak operator compact.

Proof. This is the topology $\sigma(\mathcal{B}, \mathcal{B}_*)$ topology on $(\mathcal{B})_1$. By the Banach-Alaoglu theorem, this is compact.

Corollary 1.4. Let $M \subseteq \mathcal{B}$ be a vector subspace which is weak operator closed. Denote $M_* = \{\varphi|_M : \varphi \in \mathcal{B}_*\}$. Then $(M_*)^* = M$ via the duality pairing $\langle x, \varphi \rangle = \varphi(x)$. Thus, any von Neumann algebra is the dual of some space.

Remark 1.2. Any C^* -algebra with a pre-dual is a von-Neumann algebra.

Here is some notation:

- 1. If $X \subseteq H$ is a nonempty subset, then we denote [X] to be the norm closure of span X. We may also use this same notation to denote the orthogonal projection of that space (but this will be clear in context).
- 2. Let $S \subseteq B(H)$ be nonempty. Then we denote $S' = \{x \in \mathcal{B}(H) : xy = yx \ \forall y \in S\}$ to be the **commutant** of S in $\mathcal{B}(H)$.

Proposition 1.1. S' is strong operator closed, and it is an algebra. If $S = S^*$, where $S^* = \{x^* : x \in S\}$, then S' is a *-algebra. In this case, S' is weak operator closed and is hence a von-Neumann algebra.

Proof. If $x_i \in S'$ and $x_i \xrightarrow{\text{so}} x \in B(H)$, then

$$xy\xi = \lim_{i} x_i y\xi = \lim_{i} y\xi_i \xi = y \lim_{i} x_i \xi = yx\xi,$$

so $x \in S'$.

Remark 1.3. Physicists view S' as an algebra of symmetries of states in a system.

We will prove the following theorem next time.

Theorem 1.3 (von Neumann's bicommutant theorem, 1929). Let $M \subseteq B(H)$ be a *algebra with $1_M = id_H$. Then M is a von Neumann algebra if and only if M = (M')'.

Remark 1.4. Some people call this von Neumann's density theorem because it says that the weak operator closure of M is (M')'.

Theorem 1.4 (Kaplansky, late 50s). Let M, M_0 be *-algebras. If the strong operator closure of M_0^* equals M, then $(\overline{M_0}^{so})_1 = (M)_1$.